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Abstract

This document gives a brief overview of the basic theory of electromagnetic (EM) wave propagation
through an inhomogeneous, non-stochastic plasma and the development of a computer code to
model that propagation in three dimensional space. This code has been developed to account for
extreme ionospheric refractory conditions, that is, propagation of electromagnetic waves near the
geomagnetic poles, and significant electron density gradients in all three directions.
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Introduction

Accurate characterization of radio frequency (RF) signals that have traversed the ionosphere is
very important for developing and characterizing detection systems. This characterization is based
on the theory of ionospheric EM wave propagation. For this report, only the non-stochastic part
of the ionospheric plasma will be addressed in terms of EM propagation, that is, the ionospheric
plasma is assumed to be quiescent. EM scintillation due to the stochastic part of the ionosphere
is addressed elsewhere.

We have several codes to address ionospheric refraction in mostly nominal refractory conditions,
but the nature of extreme ionospheric refractory conditions requires a fully three dimensional
treatment. This is due to the large changes in the geomagnetic field and electron density responsible
for the extreme refraction.
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Theory

The ionosphere is basically a non homogeneous magnetized plasma, and there are a number of
different ways to model EM wave propagation through this type of medium. The basics of EM
wave propagation in an inhomogeneous plasma are well documented [1, 2, 3, 4]. We wish to
solve the RF signal’s (EM wave’s) amplitude and phase at a given frequency as it traverses the
ionosphere. The EM wave frequency and plasma parameter regime of this work are best suited to
the well known ray tracing technique [5, 6, 1, 2, 7] to find this solution.

Ray tracing is based on the assumption that the wave fields can be expanded into local plane
waves, which is an excellent assumption considering the distances involved with a signal originating
on the Earth’s surface and propagating up to the underside of the ionosphere. The technique
renders a solution for the spatial trajectory and amplitude of a ‘ray’ representing the EM wave’s
Poynting vector. A single component of the wave’s electric field E can thus be represented as an
asymptotic expansion in powers of 1/k0 [7]

E(r) = eik0Ψ(r,t)
∞
∑

m=0

Em(r)

(ik0)m
(2.1)

where k0 = ω/c is the wave vector number, ω is the radian frequency, and c is the speed of light, all
in vacuum. The time dependence of E is harmonic, that is eiωt, and will be assumed throughout.

Inside the medium, the local wave vector and frequency are defined as

k(r, t) = ∇Ψ ω(r, t) = −∂Ψ

∂t
(2.2)

The wave (Helmholtz) equation for EM waves is

∇2E(r) + k2
0n(r)

2E = 0 (2.3)

where n(r) is the refractive index of the medium. Substitute 2.1 into 2.3 and equate like powers
of k0

(∇Ψ)2 = n2 (2.4)

2∇Ψ · ∇E0 + E0∇2Ψ = 0 (2.5)
...

2∇Ψ · ∇Em + Em∇2Ψ = −∇2Em−1 (2.6)

Equation 2.4 is known as the eikonal equation and is solved such that the ray’s trajectory is
constrained to be along a path such that the dispersion relation of the EM wave is satisfied at
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every point of the path. Equations 2.5 and 2.6 describe the amplitude transport of the wave along
the ray path.

The first term in the expansion of E in 2.1 will dominate as long as the spatial variation of the
index of refraction is small compared to the wavelength, or

|∇n(r)|
k2
0n

2(r)
<< 1 (2.7)

This assumption is known as the geometric optics limit of the ray tracing solution [7], and applies
for the parameters of the ionospheric plasma and wavelengths related to this work.

Taking the first term in the wave field expansion from 2.1

E(r) = E0e
ik0Ψ(r,t) (2.8)

and using it in 2.3, we arrive at an equation of the form

L

(

∇,
∂

∂t
, r, t

)

· E0(r) = 0 (2.9)

where the operator L incorporates the dispersion relation of the EM wave propagating at any point
in the medium D(ω, k, r) as

Det[L] = D(ω,k, r) = 0 (2.10)

and

D(ω,k, r) = 1− X(1−X)

1−X − 1

2
Y 2 sin2 θ ±

[

1

4
Y 4 sin4 θ + Y 2 cos2 θ(1−X)2

]1/2
− c2k2

ω2
(2.11)

where D(ω,k, r) is the well known Appleton-Hartree dispersion relation for a EM wave propagating
in a magnetized plasma [1, 3]. In 2.11, θ is the angle between the local magnetic field B0 and the
wave number k = ∇Ψ. X(ω, r) and Y (ω, r) are defined as ωpe(r)

2/ω2 and ω/ωc(r) respectively
where

ωpe(r)
2 =

ne(r)e
2

ǫ0me

; ωc =
eB0(r)

me

(2.12)

and ne, me, B0, and ǫ0 are the local electron density, electron mass, local magnetic field magnitude,
and free space permeability respectively.

Solving the partial differential system of equations in 2.9 by the method of characteristics, gives
a set known as the ray equations

dR

dt
= −∂D

∂k
/
∂D

∂ω
(2.13)

dk

dt
= −∂D

∂R
/
∂D

∂ω
(2.14)

where R is the position vector along the ray path and t is the group time. The right side of
equation 2.13 is effectively the group velocity, and thus the change in R is due to the change in
the group velocity. Equation 2.13 shows that changes in k are due to the spatial gradients in the
plasma from the dispersion relation.
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In general, the solutions to the dispersion relation 2.11 are complex if damping such as electron
collisions are included, however, these effects are not included here, and thus only the real parts
of the solutions are necessary.

We can now solve the trajectory of the ray from which we can get the time (phase) delay
required to propagate through the medium at a given frequency, as well as the path of the ray.

To solve the amplitude along the ray path, the amplitude transport equation 2.5 can be used.
Alternatively, we can track the cross section of ‘bundles of rays’ [7], or divide the initial amplitude
of the ray by the total path length of the ray to get the amplitude at the end of the ray. The last
two methods are adequate approximations as long as refractive effects are not extremely strong.

Note that the solution of the wave’s path and amplitude are for a single frequency. wide
bandwidth signal propagation is found by using many discrete frequencies in the signal bandwidth,
solving their amplitudes and phases, and constructing a frequency domain transfer function.

Equation 2.11 is bi-quadratic and has two principle roots [1]. This comes from the ± sign in
the denominator of the second term on the right side. Thus, for a given frequency, one or both
modes will propagate, and this will affect the amplitude of the ray after it leaves the ionosphere.
The proportion of each mode inside the medium, related to the initial amplitude of the ray before
entering it, is a separate issue currently being pursued, and will not be addressed in this work.
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Computer Algorithm

It is common to solve the eikonal equation for the trajectory of the ray, and find the amplitude at
the end of the ray by dividing the initial amplitude by the ray’s path length. This avoids lengthy
calculation of the ray’s amplitude from 2.5 and 2.6, but as mentioned earlier, can lead to incorrect
amplitudes for extreme refraction. In this work, we solve for the ray paths and find the magnitudes
and phases of the amplitudes by a division of the total path length at each frequency (and mode),
since extreme refraction would lead to a ray missing the receiver altogether or being refracted back
towards the transmitter. In either case, the ray will not contribute to the received signal.

3.1 Overview

We use the method of Horne [8] to solve for the ray trajectories. The approach is to solve equa-
tions 2.13 and 2.14 by defining two coordinate systems as shown in Figure 3.1. The first coordinate
system is the Earth Centered Earth Fixed (ECEF) coordinate system defined as (0XY Z). A point
P on the ray path makes an angle θ with the Z axis and φ with the X axis. The second system
is a local coordinate system at that (or any) point along the ray path defined as (Pxyz). In this
system, the z axis is parallel to the local magnetic field B0, the x axis is orthogonal to z and
lies in the meridian plane pointing away from Earth at the equator, and the y axis completes the
right-handed system [8]. The wave vector makes an angles Ψ with the z axis and η with the x
axis.

Figure 3.1: Geometry for solving the ray equations 2.13, 2.14 from [8].
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The dispersion relation D(ω,k, r) is calculated in the local system, with

k2
⊥
= k2

x + k2
y (3.1)

Equations 2.13 and 2.14 are then solved in the ECEF system by using coordinate transforms.
The coordinate transform for the wave vector using the rotation matrix from local to ECEF is

then




kX
kY
kZ



 =





cos θBZ cos φ − sin φ − sin θBZ cosφ
cos θBZ sinφ cosφ − sin θBZ sinφ

sin θBZ 0 cos θBZ









kx
ky
kz



 (3.2)

Now, the numerator on the right hand side of 2.13 is






















∂D

∂kX

∂D

∂kY

∂D

∂kZ























=













kx cos θBZ cosφ− ky sinφ − sin θBZ cosφ

kx cos θBZ sin φ− ky cosφ − sin θBZ sin φ

kx sin θBZ cos θBZ























1

k⊥

∂D

∂k⊥

∂D

∂kz











(3.3)

By the chain rule, the numerator on the right hand side of equation 2.14 is

∂D

∂R
=

∂D

∂B

∂B

∂R
+

∂D

∂ne

∂ne

∂R
+

∂D

∂k

∂k

∂R
(3.4)

The first two differentials are straightforwardly solved once the magnetic field and electron density
spatial profiles are known. The last term is calculated in the local system and transformed to the
ECEF system.

[

∂D

∂k

∂k

∂R

]

X

= T1
∂θ

∂X
+ T2

∂φ

∂X
(3.5)

[

∂D

∂k

∂k

∂R

]

Y

= T1
∂θ

∂Y
+ T2

∂φ

∂Y
(3.6)

[

∂D

∂k

∂k

∂R

]

Z

= T1
∂θ

∂Z
+ T2

∂φ

∂Z
(3.7)

where

T1 =
kzkx
k⊥

∂D

∂k⊥
− kx

∂D

∂kz
(3.8)

T2 = ky sin θBZ

(

kz
k⊥

∂D

∂k⊥
− ∂D

∂kz

)

(3.9)

The derivatives of D can be calculated in a straightforward manner.

3.2 Algorithm

A computer ray tracing code has been implemented that can calculate the ray trajectory, ampli-
tude, and time of flight (phase) for EM propagation through the ionosphere. The code can accept
density and magnetic field profiles in functional form or in tabular form in all three dimensions.
The calculation of the ray trajectory from equations 2.13 and 2.14 proceeds as follows:
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0 Start at the Earth’s surface where ne → 0 and [(k2
X + k2

Y + k2
Z)

1q/2 = k0.

1 Specify the mode (+ or - in denominator of second term in 2.11), frequency, position on Earth’s
surface (X, Y, Z), the magnetic field B0, and θBZ where

θBZ = cos−1

[

B0 · Ẑ
|B0||Ẑ|

]

(3.10)

2 Perform necessary coordinate transforms via 3.2.

3 calculate
∂D

∂k⊥
,
∂D

∂kz
,
∂D

∂ω
,
∂D

∂B
,
∂D

∂ne
,
∂B

∂R
,
∂ne

∂R

4 calculate
∂D

∂k

in the ECEF coordinate system via
∂D

∂k⊥
,
∂D

∂kz

and equation 3.3

5 for a time step dt:
∆R = Γ× dt

where

Γ = −∂D

∂k
/
∂D

∂ω

and then
Rnew = Rold +∆R

6 calculate T1 and T2 from 3.8 and 3.9, and use these and Rnew to calculate

∂D

∂k

∂k

∂R

7 for the same time step dt, in the ECEF coordinate system

∆k = γ × dt

where

γ =

∂D

∂B

∂B

∂R
+

∂D

∂ne

∂ne

∂R
+

∂D

∂k

∂k

∂R
∂D/∂ω

from equation 3.4, and thus
knew = kold +∆k
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8 Go to 2 for the next iteration.
This process is repeated until the desired limit in time or ray length is reached. For each

frequency/mode, the amplitude can be found from dividing the initial amplitude by the total ray
path length, and the phase found from the time taken to travel the path length.

Outside of the plasma, the dispersion relation for the EM wave is much simpler

D(ω,k, r) = 1− c2|k|2
ω2

= 0 (3.11)

and it is also much simpler to trace the ray, since it will only travel in a straight trajectory in
vacuum. Therefore, the code must check to verify that the electron density is sufficiently close
to zero in order to transfer to the vacuum dispersion relation. This is done with the help of an
alternate form of the Appleton-Hartree dispersion relation [1]

An4 −Bn2 + C = 0 (3.12)

where the index of refraction is n and

A = S sin2 θ + P cos2 θ (3.13)

B = RL sin2 θ + PS(1 + cos2 θ) (3.14)

C = PRL (3.15)

R = 1− X

1− Y 2
(1− Y ) (3.16)

L = 1− X

1− Y 2
(1 + Y ) (3.17)

S = 1− X

1− Y 2
(3.18)

P = 1−X (3.19)

The solution of 3.12 can be written

n2 =
B +mF

2A
F =

√
B2 − 4AC (3.20)

and m = ±1 denotes the propagation mode. As ne → 0, B → 2, A → 1, and F → 0 whereupon
n takes the value of unity for free space. Thus, the condition B2 = 4AC is the plasma/vacuum
‘crossing point’ and this is checked in the code to determine where to transfer from vacuum to
plasma dispersion relations (or vice-versa).

inside plasma |B2 − 4AC| > EPS

outside plasma |B2 − 4AC| ≤ EPS
where EPS is a very small number.
Once inside the plasma, the code must also check if one or both of the modes from the plasma

dispersion relation 2.11 is cutoff. In general, the condition for a propagating mode to become cutoff
in the absence of any damping mechanisms is n2 → 0. Thus, from equation 3.20 the condition

B +mF
?
< 0 (3.21)

is checked for each mode (m = ±1) to determine if it will continue to be followed in the calculation
or reported as cutoff.
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Application

Figure 4.1: Ray tracing a 39.7 MHz m = +1 ray from the Earth’s surface.

To exercise the code, we start with the well known Chapman electron density profile [3]

ne = n0 · exp
[

1

2
·
(

1.0− R− Rmax

h
− e−(R−Rmax)/h

)]

(4.1)

where the radius vector in the ECEF system is

R =
[

X2 + Y 2 + Z2
]1/2

(4.2)

n0 is the local electron density, Rmax is the height of the maximum in electron density set to
RE + 300 km, RE is the Earth’s radius, and h is a ‘thickness’ parameter set to 35 km. To that,
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we add a density depletion centered at some X0, Y0, Z0 point above the Earth’s surface such that
if the ray passes within a distance σ, the local electron density falls to

nl = ne − δn · exp
[

−
{

(X −X0)
2 + (Y − Y0)

2 + (Z − Z0)
2
}

/σ2
]

(4.3)

This is basically a Guassian density depletion bubble centered at X0, Y0, Z0.
The Earth’s geometry is assumed spherical. The Earth’s magnetic field is a simple dipole field

centered on the sphere’s north and south poles. Note that the code can accept any geometry for
the Earth and geomagnetic field, the particular choices for the examples in this report were chosen
for convenience.

Figure 4.1 shows the results of launching a m = +1 mode ray of frequency 39.7 MHz at a
location of θ, φ = 85o, 35o on the Earth’s surface for two oblique launch angles. The maximum
electron density was n0 = 3.0 · 1012m−3 with δn = −3.0 · 1012m−3, an aggressive density depletion
within the bubble. Both rays are refracted back to Earth, but take different paths.

Figure 4.2: Ray tracing 10 MHz m = +1 rays from the Earth’s surface.

Figure 4.2 shows the results of launching several m = +1, 10 MHz rays to a similar Gaussian
density depletion (σ = 20 km) located 1000 km above Earth at θ, φ = 85o, 85o. The launch angles
are all in the θ = 85o plane in the ECEF system. These distances, and the Gaussian symmetry
in the ionosphere and density depletion, dictate that the ray refraction is mostly in the θ = 85o

plane.
In figure 4.3, the code was run only in two dimensions with a local depletion, enhancement,

and no perturbation in the electron density. Here we see that a detector traveling at an altitude
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Figure 4.3: Ray tracing 39.7 MHz m = +1 rays from the Earth’s surface - doppler spread effects

above about approx. 500 km in this example will experience the doppler spread effect. That is,
the single frequency ray will reach the detector at different times due to their paths crossing before
reaching the detector, causing a difference in the doppler shift from the signal.
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Summary

We have developed a fully three dimensional ray tracing code for arbitrary electron density and
geomagnetic field profiles. The algorithm is based on one used previously [8]. The code has been
exercised and gives reasonable results based on the chosen ionospheric parameters for the examples
presented.
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